APPENDIX A

THREE-PHASE CIRCUITS

A lmost all electric power generation and most of the power transmission in the world today is in the form of three-phase ac circuits. A three-phase ac power system consists of three-phase generators, transmission lines, and loads. AC power systems have a great advantage over dc systems in that their voltage levels can be changed with transformers to reduce transmission losses, as described in Chapter 2. *Three-phase* ac power systems have two major advantages over singlephase ac power systems: (1) it is possible to get more power per kilogram of metal from a three-phase machine and (2) the power delivered to a three-phase load is constant at all times, instead of pulsing as it does in single-phase systems. Threephase systems also make the use of induction motors easier by allowing them to start without special auxiliary starting windings.

A.1 GENERATION OF THREE-PHASE VOLTAGES AND CURRENTS

A three-phase generator consists of three single-phase generators, with voltages equal in magnitude but differing in phase angle from the others by 120° Each of these three generators could be connected to one of three identical loads by a pair of wires, and the resulting power system would be as shown in Figure A–1c. Such a system consists of three single-phase circuits that happen to differ in phase angle by 120° The current flowing to each load can be found from the equation

$$I = \frac{V}{Z}$$
 (A-1)

682 ELECTRIC MACHINERY FUNDAMENTALS

FIGURE A-1

(a) A three-phase generator, consisting of three single-phase sources equal in magnitude and 120° apart in phase. (b) The voltages in each phase of the generator. (c) The three phases of the generator connected to three identical loads.

FIGURE A-1 (concluded) (d) Phasor diagram showing the voltages in each phase.

FIGURE A-2

The three circuits connected together with a common neutral.

Therefore, the currents flowing in the three phases are

$$\mathbf{I}_{A} = \frac{V \angle 0^{\circ}}{Z \angle \theta} = I \angle -\theta \tag{A-2}$$

$$\mathbf{I}_{B} = \frac{V \angle -120^{\circ}}{Z \angle \theta} = I \angle -120^{\circ} - \theta \tag{A-3}$$

$$\mathbf{I}_{C} = \frac{V \angle -240^{\circ}}{Z \angle \theta} = I \angle -240^{\circ} - \theta \tag{A-4}$$

It is possible to connect the negative ends of these three single-phase generators and loads together, so that they share a common return line (called the *neutral*). The resulting system is shown in Figure A-2; note that now only *four* wires are required to supply power from the three generators to the three loads.

How much current is flowing in the single neutral wire shown in Figure A-2? The return current will be the sum of the currents flowing to each individual load in the power system. This current is given by

$$I_N = I_A + I_B + I_C$$

$$= I \angle -\theta + I \angle -\theta - 120^\circ + I \angle -\theta - 240^\circ$$

$$= I \cos (-\theta) + jI \sin (-\theta)$$

$$+ I \cos (-\theta - 120^\circ) + jI \sin (-\theta - 120^\circ)$$

$$+ I \cos (-\theta - 240^\circ) + jI \sin (-\theta - 240^\circ)$$

$$= I [\cos (-\theta) + \cos (-\theta - 120^\circ) + \cos (-\theta - 240^\circ)]$$

$$+ jI [\sin (-\theta) + \sin (-\theta - 120^\circ) + \sin (-\theta - 240^\circ)]$$

Recall the elementary trigonometric identities:

$$\cos (\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta \qquad (A-6)$$

$$\sin (\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta \qquad (A-7)$$

Applying these trigonometric identities yields

$$I_N = I[\cos(-\theta) + \cos(-\theta)\cos 120^\circ + \sin(-\theta)\sin 120^\circ + \cos(-\theta)\cos 240^\circ + \sin(-\theta)\sin 240^\circ] + jI[\sin(-\theta) + \sin(-\theta)\cos 120^\circ - \cos(-\theta)\sin 120^\circ + \sin(-\theta)\cos 240^\circ - \cos(-\theta)\sin 240^\circ]$$

$$I_N = I\left[\cos(-\theta) - \frac{1}{2}\cos(-\theta) + \frac{\sqrt{3}}{2}\sin(-\theta) - \frac{1}{2}\cos(-\theta) - \frac{\sqrt{3}}{2}\sin(-\theta)\right] + jI\left[\sin(-\theta) - \frac{1}{2}\sin(-\theta) - \frac{\sqrt{3}}{2}\cos(-\theta) - \frac{1}{2}\sin(-\theta) + \frac{\sqrt{3}}{2}\cos(-\theta)\right]$$

$$I_N = 0 A$$

As long as the three loads are equal, the return current in the neutral is zero! A three-phase power system in which the three generators have voltages that are exactly equal in magnitude and 120° different in phase, and in which all three loads are identical, is called a *balanced three-phase system*. In such a system, the neutral is actually unnecessary, and we could get by with only *three* wires instead of the original six.

PHASE SEQUENCE. The *phase sequence* of a three-phase power system is the order in which the voltages in the individual phases peak. The three-phase power system illustrated in Figure A-1 is said to have phase sequence *abc*, since the voltages in the three phases peak in the order a, b, c (see Figure A-1b). The phasor diagram of a power system with an *abc* phase sequence is shown in Figure A-3a.

It is also possible to connect the three phases of a power system so that the voltages in the phases peak in order the order a, c, b. This type of power system is said to have phase sequence *acb*. The phasor diagram of a power system with an *acb* phase sequence is shown in Figure A-3b.

The result derived above is equally valid for both *abc* and *acb* phase sequences. In either case, if the power system is balanced, the current flowing in the neutral will be 0.

FIGURE A-3

(a) The phase voltages in a power system with an *abc* phase sequence. (b) The phase voltages in a power system with an *acb* phase sequence.

A.2 VOLTAGES AND CURRENTS IN A THREE-PHASE CIRCUIT

A connection of the sort shown in Figure A-2 is called a wye (Y) connection because it looks like the letter Y. Another possible connection is the delta (Δ) connection, in which the three generators are connected head to tail. The Δ connection is possible because the sum of the three voltages $V_A + V_B + V_C = 0$, so that no short-circuit currents will flow when the three sources are connected head to tail.

Each generator and each load in a three-phase power system may be either Y- or Δ -connected. Any number of Y- and Δ -connected generators and loads may be mixed on a power system.

Figure A-4 shows three-phase generators connected in Y and in Δ . The voltages and currents in a given phase are called *phase quantities*, and the voltages between lines and currents in the lines connected to the generators are called *line quantities*. The relationship between the line quantities and phase quantities for a given generator or load depends on the type of connection used for that generator or load. These relationships will now be explored for each of the Y and Δ connections.

Voltages and Currents in the Wye (Y) Connection

A Y-connected three-phase generator with an *abc* phase sequence connected to a resistive load is shown in Figure A-5. The phase voltages in this generator are given by

$$V_{an} = V_{\phi} \angle 0^{\circ}$$

$$V_{bn} = V_{\phi} \angle -120^{\circ}$$

$$V_{cn} = V_{\phi} \angle -240^{\circ}$$
(A-8)

Since the load connected to this generator is assumed to be resistive, the current in each phase of the generator will be at the same angle as the voltage. Therefore, the current in each phase will be given by

$$\mathbf{I}_{a} = \mathbf{I}_{\phi} \angle 0^{\circ}$$

$$\mathbf{I}_{b} = \mathbf{I}_{\phi} \angle -120^{\circ}$$

$$\mathbf{I}_{c} = \mathbf{I}_{\phi} \angle -240^{\circ}$$
(A-9)

FIGURE A-6 Line-to-line and phase (line-to-neutral) voltages for the Y connection in Figure A-5.

From Figure A-5, it is obvious that the current in any line is the same as the current in the corresponding phase. Therefore, for a Y connection,

$$I_L = I_{\phi} \qquad \text{Y connection} \qquad (A-10)$$

The relationship between line voltage and phase voltage is a bit more complex. By Kirchhoff's voltage law, the line-to-line voltage V_{ab} is given by

$$\begin{aligned} \mathbf{V}_{ab} &= \mathbf{V}_{a} - \mathbf{V}_{b} \\ &= V_{\phi} \angle 0^{\circ} - V_{\phi} \angle -120^{\circ} \\ &= V_{\phi} - \left(-\frac{1}{2} V_{\phi} - j \frac{\sqrt{3}}{2} V_{\phi} \right) = \frac{3}{2} V_{\phi} + j \frac{\sqrt{3}}{2} V_{\phi} \\ &= \sqrt{3} V_{\phi} \left(\frac{\sqrt{3}}{2} + j \frac{1}{2} \right) \\ &= \sqrt{3} V_{\phi} \angle 30^{\circ} \end{aligned}$$

Therefore, the relationship between the magnitudes of the line-to-line voltage and the line-to-neutral (phase) voltage in a Y-connected generator or load is

$$V_{LL} = \sqrt{3}V_{\phi}$$
 Y connection (A-11)

In addition, the line voltages are shifted 30° with respect to the phase voltages. A phasor diagram of the line and phase voltages for the Y connection in Figure A-5 is shown in Figure A-6.

Note that for Y connections with the *abc* phase sequence such as the one in Figure A-5, the voltage of a line *leads* the corresponding phase voltage by 30° . For Y connections with the *acb* phase sequence, the voltage of a line *lags* the corresponding phase voltage by 30° , as you will be asked to demonstrate in a problem at the end of the appendix.

FIGURE A-7 Δ -connected generator with a resistive load.

Although the relationships between line and phase voltages and currents for the Y connection were derived for the assumption of a unity power factor, they are in fact valid for any power factor. The assumption of unity-power-factor loads simply made the mathematics slightly easier in this development.

Voltages and Currents in the Delta (Δ) Connection

A Δ -connected three-phase generator connected to a resistive load is shown in Figure A-7. The phase voltages in this generator are given by

$$V_{ab} = V_{\phi} \angle 0^{\circ}$$

$$V_{bc} = V_{\phi} \angle -120^{\circ}$$

$$V_{ca} = V_{\phi} \angle -240^{\circ}$$
(A-12)

Because the load is resistive, the phase currents are given by

$$\mathbf{I}_{ab} = I_{\phi} \angle 0^{\circ}$$
$$\mathbf{I}_{bc} = I_{\phi} \angle -120^{\circ}$$
$$\mathbf{I}_{ca} = I_{\phi} \angle -240^{\circ}$$

In the case of the Δ connection, it is obvious that the line-to-line voltage between any two lines will be the same as the voltage in the corresponding phase. In a Δ connection,

$$V_{LL} = V_{\phi} \qquad \Delta \text{ connection}$$
 (A-14)

The relationship between line current and phase current is more complex. It can be found by applying Kirchhoff's current law at a node of the Δ . Applying Kirchhoff's current law to node A yields the equation

$$I_{a} = I_{ab} - I_{ca}$$

= $I_{\phi} \angle 0^{\circ} - I_{\phi} \angle -240^{\circ}$
= $I_{\phi} - \left(-\frac{1}{2}I_{\phi} + j\frac{\sqrt{3}}{2}I_{\phi}\right) = \frac{3}{2}I_{\phi} - j\frac{\sqrt{3}}{2}I_{\phi}$

FIGURE 2-8 Line and phase currents for the Δ connection in Figure A-7.

Table A-1 Summary of relationships in Y and Δ connections

	Y connection	Δ connection
Voltage magnitudes	$V_{LL} = \sqrt{3} V_{\phi}$	$V_{LL} = V_{\phi}$
Current magnitudes	$I_L = I_{\phi}$	$I_L = \sqrt{3} I_{\phi}$
abc phase sequence	V_{ab} leads V_a by 30°	I_a lags I_{ab} by 30°
acb phase sequence	V_{ab} lags V_a by 30°	\mathbf{I}_a leads \mathbf{I}_{ab} by 30°

$$= \sqrt{3}I_{\phi}\left(\frac{\sqrt{3}}{2} - j\frac{1}{2}\right)$$
$$= \sqrt{3}I_{\phi} \angle -30^{\circ}$$

Therefore, the relationship between the magnitudes of the line and phase currents in a Δ -connected generator or load is

$$I_L = \sqrt{3}I_{\phi}$$
 Δ connection (A-15)

and the line currents are shifted 30° relative to the corresponding phase currents.

Note that for Δ connections with the *abc* phase sequence such as the one shown in Figure A-7, the current of a line *lags* the corresponding phase current by 30° (see Figure A-8). For Δ connections with the *acb* phase sequence, the current of a line *leads* the corresponding phase current by 30°.

The voltage and current relationships for Y- and Δ -connected sources and loads are summarized in Table A–1.

FIGURE A-9 A balanced Y-connected load.

A.3 POWER RELATIONSHIPS IN THREE-PHASE CIRCUITS

Figure A-9 shows a balanced Y-connected load whose phase impedance is $\mathbf{Z}_{\phi} = Z \angle \theta^{\circ}$. If the three-phase voltages applied to this load are given by

$$v_{an}(t) = \sqrt{2}V \sin \omega t$$

$$v_{bn}(t) = \sqrt{2}V \sin(\omega t - 120^{\circ}) \qquad (A-16)$$

$$v_{cn}(t) = \sqrt{2}V \sin(\omega t - 240^{\circ})$$

then the three-phase currents flowing in the load are given by

$$i_{a}(t) = \sqrt{2I} \sin(\omega t - \theta)$$

$$i_{b}(t) = \sqrt{2I} \sin(\omega t - 120^{\circ} - \theta) \qquad (A-17)$$

$$i_{c}(t) = \sqrt{2I} \sin(\omega t - 240^{\circ} - \theta)$$

where I = V/Z. How much power is being supplied to this load from the source?

The instantaneous power supplied to one phase of the load is given by the equation

$$p(t) = v(t)i(t) \tag{A-18}$$

Therefore, the instantaneous power supplied to each of the three phases is

$$p_{a}(t) = v_{ab}(t)i_{a}(t) = 2VI\sin(\omega t)\sin(\omega t - \theta)$$

$$p_{b}(t) = v_{bb}(t)i_{b}(t) = 2VI\sin(\omega t - 120^{\circ})\sin(\omega t - 120^{\circ} - \theta) \qquad (A-19)$$

$$p_{c}(t) = v_{cb}(t)i_{c}(t) = 2VI\sin(\omega t - 240^{\circ})\sin(\omega t - 240^{\circ} - \theta)$$

A trigonometric identity states that

$$\sin \alpha \sin \beta = \frac{1}{2} [\cos(\alpha - \beta) - \cos(\alpha - \beta)] \qquad (A-20)$$

Applying this identity to Equations (A-19) yields new expressions for the power in each phase of the load:

FIGURE A-10 Instantaneous power in phases a, b, and c, plus the total power supplied to the load.

$$p_{a}(t) = VI[\cos \theta - \cos(2\omega t - \theta)]$$

$$p_{b}(t) = VI[\cos \theta - \cos(2\omega t - 240^{\circ} - \theta)] \qquad (A-21)$$

$$p_{c}(t) = VI[\cos \theta - \cos(2\omega t - 480^{\circ} - \theta)]$$

The total power supplied to the entire three-phase load is the sum of the power supplied to each of the individual phases. The power supplied by each phase consists of a constant component plus a pulsing component. However, the pulsing components in the three phases cancel each other out since they are 120° out of phase with each other, and the final power supplied by the three-phase power system is constant. This power is given by the equation:

$$p_{tot}(t) = p_A(t) + p_B(t) + p_C(t) = 3VI \cos \theta$$
 (A-22)

The instantaneous power in phases a, b, and c are shown as a function of time in Figure A–10. Note that *the total power supplied to a balanced three-phase load is constant at all times*. The fact that a constant power is supplied by a three-phase power system is one of its major advantages compared to single-phase sources.

Three-Phase Power Equations Involving Phase Quantities

The single-phase power Equations (1-60) to (1-66) apply to *each phase* of a Y- or Δ -connected three-phase load, so the real, reactive, and apparent powers supplied to a balanced three-phase load are given by

$$P = 3V_{\phi} I_{\phi} \cos \theta \tag{A-23}$$

$$Q = 3V_{\phi} I_{\phi} \sin \theta \tag{A-24}$$

$$S = 3V_{\phi}I_{\phi} \tag{A-25}$$

$$P = 3I_{\phi}^2 Z \cos \theta \tag{A-26}$$

$$Q = 3I_{\phi}^2 Z \sin \theta \tag{A-27}$$

$$S = 3I_{\phi}^2 Z \tag{A-28}$$

The angle θ is again the angle between the voltage and the current in any phase of the load (it is the same in all phases), and the power factor of the load is the cosine of the impedance angle θ . The power-triangle relationships apply as well.

Three-Phase Power Equations Involving Line Quantities

It is also possible to derive expressions for the power in a balanced three-phase load in terms of line quantities. This derivation must be done separately for Y- and Δ -connected loads, since the relationships between the line and phase quantities are different for each type of connection.

For a Y-connected load, the power consumed by a load is given by

$$P = 3V_{\phi} I_{\phi} \cos \theta \qquad (A-23)$$

For this type of load, $I_L = I_{\phi}$ and $V_{LL} = \sqrt{3}V_{\phi}$, so the power consumed by the load can also be expressed as

$$P = 3\left(\frac{V_{LL}}{\sqrt{3}}\right) I_L \cos \theta$$

$$P = \sqrt{3} V_{LL} I_L \cos \theta$$
(A-29)

For a Δ -connected load, the power consumed by a load is given by

$$P = 3V_{\phi} I_{\phi} \cos \theta \qquad (A-23)$$

For this type of load, $I_L = \sqrt{3}I_{\phi}$ and $V_{LL} = V_{\phi}$, so the power consumed by the load can also be expressed in terms of line quantities as

$$P = 3V_{LL} \left(\frac{I_L}{\sqrt{3}}\right) \cos \theta$$

= $\sqrt{3}V_{LL}I_L \cos \theta$ (A-29)

This is exactly the same equation that was derived for a Y-connected load, so Equation (A-29) gives the power of a balanced three-phase load in terms of line quantities *regardless of the connection of the load*. The reactive and apparent powers of the load in terms of line quantities are

$$Q = \sqrt{3} V_{LL} I_L \sin \theta \tag{A-30}$$

$$S = \sqrt{3} V_{LL} I_L \tag{A-31}$$

It is important to realize that the $\cos \theta$ and $\sin \theta$ terms in Equations (A-29) and (A-30) are the cosine and sine of the angle between the *phase* voltage and the *phase* current, not the angle between the line-to-line voltage and the line current. Remember that there is a 30° phase shift between the line-to-line and phase voltage for a Y connection, and between the line and phase current for a Δ connection, so it is important not to take the cosine of the angle between the line-to-line voltage and line current.

A.4 ANALYSIS OF BALANCED THREE-PHASE SYSTEMS

If a three-phase power system is balanced, it is possible to determine the voltages, currents, and powers at various points in the circuit with a *per-phase equivalent circuit*. This idea is illustrated in Figure A–11. Figure A–11a shows a Y-connected generator supplying power to a Y-connected load through a three-phase transmission line.

In such a balanced system, a neutral wire may be inserted with no effect on the system, since no current flows in that wire. This system with the extra wire inserted is shown in Figure A–11b. Also, notice that each of the three phases is *identical* except for a 120° shift in phase angle. Therefore, it is possible to analyze a circuit consisting of *one phase and the neutral*, and the results of that analysis will be valid for the other two phases as well if the 120° phase shift is included. Such a per-phase circuit is shown in Figure A–11c.

There is one problem associated with this approach, however. It requires that a neutral line be available (at least conceptually) to provide a return path for current flow from the loads to the generator. This is fine for Y-connected sources and loads, but no neutral can be connected to Δ -connected sources and loads.

How can Δ -connected sources and loads be included in a power system to be analyzed? The standard approach is to transform the impedances by the Y- Δ transform of elementary circuit theory. For the special case of balanced loads, the Y- Δ transformation states that a Δ -connected load consisting of three equal impedances, each of value Z, is totally equivalent to a Y-connected load consisting of three impedances, each of value Z/3 (see Figure A-12). This equivalence means that the voltages, currents, and powers supplied to the two loads cannot be distinguished in any fashion by anything external to the load itself.

FIGURE A-11

(a) A Y-connected generator and load. (b) System with neutral inserted. (c) The per-phase equivalent circuit.

FIGURE A-12

Y- Δ transformation. A Y-connected impedance of Z/3 Ω is totally equivalent to a Δ -connected impedance of Z Ω to any circuit connected to the load's terminals.

FIGURE A-13 The three-phase circuit of Example A-1.

If Δ -connected sources or loads include voltage sources, then the magnitudes of the voltage sources must be scaled according to Equation (A-11), and the effect of the 30° phase shift must be included as well.

Example A-1. A 208-V three-phase power system is shown in Figure A-13. It consists of an ideal 208-V Y-connected three-phase generator connected through a three-phase transmission line to a Y-connected load. The transmission line has an impedance of $0.06 + j0.12 \Omega$ per phase, and the load has an impedance of $12 + j9 \Omega$ per phase. For this simple power system, find

- (a) The magnitude of the line current I_L
- (b) The magnitude of the load's line and phase voltages V_{LL} and $V_{\phi L}$

FIGURE A-14 Per-phase circuit in Example A-1.

- (c) The real, reactive, and apparent powers consumed by the load
- (d) The power factor of the load
- (e) The real, reactive, and apparent powers consumed by the transmission line
- (f) The real, reactive, and apparent powers supplied by the generator
- (g) The generator's power factor

Solution

Since both the generator and the load on this power system are Y-connected, it is very simple to construct a per-phase equivalent circuit. This circuit is shown in Figure A-14.

(a) The line current flowing in the per-phase equivalent circuit is given by

$$I_{\text{line}} = \frac{V}{Z_{\text{line}} + Z_{\text{load}}}$$

= $\frac{120 \angle 0^{\circ} V}{(0.06 + j 0.12 \ \Omega) + (12 + j 9 \Omega)}$
= $\frac{120 \angle 0^{\circ}}{12.06 + j 9.12} = \frac{120 \angle 0^{\circ}}{15.12 \angle 37.1^{\circ}}$
= $7.94 \angle -37.1^{\circ} \text{ A}$

The magnitude of the line current is thus 7.94 A.

(b) The phase voltage on the load is the voltage across one phase of the load. This voltage is the product of the phase impedance and the phase current of the load:

$$V_{\phi L} = I_{\phi L} Z_{\phi L}$$

= (7.94\angle - 37.1° A)(12 + j9 \Omega)
= (7.94\angle - 37.1° A)(15\angle 36.9° \Omega)
= 119.1\angle - 0.2° V

Therefore, the magnitude of the load's phase voltage is

 $V_{\phi L} = 119.1 V$

and the magnitude of the load's line voltage is

$$V_{IL} = \sqrt{3}V_{dL} = 206.3 V$$

(c) The real power consumed by the load is

$$P_{\text{load}} = 3V_{\phi}I_{\phi}\cos\theta$$

= 3(119.1 V)(7.94 A) cos 36.9°
= 2270 W

The reactive power consumed by the load is

$$Q_{\text{load}} = 3V_{\phi}l_{\phi}\sin\theta$$

= 3(119.1 V)(7.94 A) sin 36.9°
= 1702 var

The apparent power consumed by the load is

$$S_{\text{toad}} = 3V_{\phi}I_{\phi}$$

= 3(119.1 V)(7.94 A)
= 2839 VA

(d) The load power factor is

$$PF_{load} = \cos \theta = \cos 36.9^{\circ} = 0.8$$
 lagging

(e) The current in the transmission line is $7.94 \ge -37.1$ A, and the impedance of the line is $0.06 + j0.12 \Omega$ or $0.134 \ge 63.4^{\circ} \Omega$ per phase. Therefore, the real, reactive, and apparent powers consumed in the line are

$$P_{\text{line}} = 3l_{\phi}^{2} Z \cos \theta \qquad (A-26)$$

= 3(7.94 A)² (0.134 \Omega) cos 63.4°
= 11.3 W
$$Q_{\text{line}} = 3l_{\phi}^{2} Z \sin \theta \qquad (A-27)$$

= 3(7.94 A)² (0.134 \Omega) sin 63.4°
= 22.7 var
$$S_{\text{line}} = 3l_{\phi}^{2} Z \qquad (A-28)$$

= 3(7.94 A)² (0.134 \Omega)
= 25.3 VA

(f) The real and reactive powers supplied by the generator are the sum of the powers consumed by the line and the load:

$$P_{gen} = P_{tine} + P_{toad}$$

= 11.3 W + 2270 W = 2281 W
 $Q_{gen} = Q_{tine} + Q_{toad}$
= 22.7 var + 1702 var = 1725 var

The apparent power of the generator is the square root of the sum of the squares of the real and reactive powers:

$$S_{\text{gen}} = \sqrt{P_{\text{gen}}^2 + Q_{\text{gen}}^2} = 2860 \,\text{VA}$$

(g) From the power triangle, the power-factor angle θ is

$$\theta_{\text{gen}} = \tan^{-1} \frac{Q_{\text{gen}}}{P_{\text{gen}}} = \tan^{-1} \frac{1725 \text{ VAR}}{2281 \text{ W}} = 37.1^{\circ}$$

Therefore, the generator's power factor is

$$PF_{gen} = \cos 37.1^\circ = 0.798$$
 lagging

FIGURE A-15 Three-phase circuit in Example A-2.

FIGURE A-16 Per-phase circuit in Example A-2.

Example A-2. Repeat Example A-1 for a Δ -connected load, with everything else unchanged.

Solution

This power system is shown in Figure A-15. Since the load on this power system is Δ connected, it must first be converted to an equivalent Y form. The phase impedance of the Δ -connected load is $12 + j9 \Omega$ so the equivalent phase impedance of the corresponding Y form is

$$Z_{\mathbf{Y}} = \frac{Z_{\mathbf{\Delta}}}{3} = 4 + j3 \,\Omega$$

The resulting per-phase equivalent circuit of this system is shown in Figure A-16.

(a) The line current flowing in the per-phase equivalent circuit is given by

$$\mathbf{I}_{\text{line}} = \frac{\mathbf{V}}{\mathbf{Z}_{\text{line}} + \mathbf{Z}_{\text{load}}}$$

$$= \frac{120\angle 0^{\circ} V}{(0.06 + j \, 0.12 \, \Omega) + (4 + j3 \, \Omega)}$$
$$= \frac{120\angle 0^{\circ}}{4.06 + j \, 3.12} = \frac{120\angle 0^{\circ}}{5.12\angle 37.5^{\circ}}$$
$$= 23.4\angle -37.5^{\circ} A$$

The magnitude of the line current is thus 23.4 A.

(b) The phase voltage on the equivalent Y load is the voltage across one phase of the load. This voltage is the product of the phase impedance and the phase current of the load:

$$V'_{\phi L} = I'_{\phi L} Z'_{\phi L}$$

= (23.4∠-37.5° A)(4 + j3 Ω)
= (23.4∠-37.5° A)(5∠36.9° Ω) = 117∠-0.6° V

The original load was Δ connected, so the phase voltage of the original load is

 $V_{dl} = \sqrt{3} (117 V) = 203 V$

and the magnitude of the load's line voltage is

$$V_{LL} = V_{deL} = 203 \text{ V}$$

(c) The real power consumed by the equivalent Y load (which is the same as the power in the actual load) is

$$P_{\text{load}} = 3V_{\phi}I_{\phi}\cos\theta$$

= 3(117 V)(23.4 A) cos 36.9°
= 6571 W

The reactive power consumed by the load is

$$Q_{\text{load}} = 3V_{\phi}I_{\phi}\sin\theta$$

= 3(117 V)(23.4 A) sin 36.9°
= 4928 var

The apparent power consumed by the load is

$$S_{\text{load}} = 3V_{\phi}I_{\phi}$$

= 3(117 V)(23.4 A)
= 8213 VA

(d) The load power factor is

$$PF_{load} = \cos \theta = \cos 36.9^{\circ} = 0.8$$
 lagging

(e) The current in the transmission is $23.4 \angle -37.5^{\circ}$ A, and the impedance of the line is $0.06 + j0.12 \Omega$ or $0.134 \angle 63.4^{\circ} \Omega$ per phase. Therefore, the real, reactive, and apparent powers consumed in the line are

$$P_{\text{line}} = 3I_{\phi}^2 Z \cos \theta \qquad (A-26)$$

= 3(23.4 A)²(0.134 \Omega) cos 63.4°
= 98.6 W

$$Q_{\text{line}} = 3I_{\phi}^{2} Z \sin \theta \qquad (A-27)$$

= 3(23.4 A)²(0.134 \Omega) sin 63.4°
= 197 var
$$S_{\text{line}} = 3I_{\phi}^{2} Z \qquad (A-28)$$

= 3(23.4 A)²(0.134 \Omega)
= 220 VA

(f) The real and reactive powers supplied by the generator are the sums of the powers consumed by the line and the load:

$$P_{gen} = P_{line} + P_{load}$$

= 98.6 W + 6571 W = 6670 W
$$Q_{gen} = Q_{line} + Q_{load}$$

= 197 var + 4928 VAR = 5125 var

The apparent power of the generator is the square root of the sum of the squares of the real and reactive powers:

$$S_{\text{gen}} = \sqrt{P_{\text{gen}}^2 + Q_{\text{gen}}^2} = 8411 \text{ VA}$$

(g) From the power triangle, the power-factor angle θ is

$$\theta_{\text{gen}} = \tan^{-1} \frac{Q_{\text{gen}}}{P_{\text{gen}}} = \tan^{-1} \frac{5125 \text{ var}}{6670 \text{ W}} = 37.6^{\circ}$$

Therefore, the generator's power factor is

$$PF_{mea} = \cos 37.6^\circ = 0.792$$
 lagging

A.5 ONE-LINE DIAGRAMS

As we have seen in this chapter, a balanced three-phase power system has three lines connecting each source with each load, one for each of the phases in the power system. The three phases are all similar, with voltages and currents equal in amplitude and shifted in phase from each other by 120°. Because the three phases are all basically the same, it is customary to sketch power systems in a simple form with a *single line* representing all three phases of the real power system. These *one-line diagrams* provide a compact way to represent the interconnections of a power system. One-line diagrams typically include all of the major components of a power system, such as generators, transformers, transmission lines, and loads with the transmission lines represented by a single line. The voltages and types of connections of each generator and load are usually shown on the diagram. A simple power system is shown in Figure A–17, together with the corresponding one-line diagram.

A.6 USING THE POWER TRIANGLE

If the transmission lines in a power system can be assumed to have negligible impedance, then an important simplification is possible in the calculation of three-

Y connected

Load 2

phase currents and powers. This simplification depends on the use of the real and reactive powers of each load to determine the currents and power factors at various points in the system.

(a) A simple power system with a Y-connected generator, a Δ -connected load, and a Y-connected

(b)

 G_1

Y connected

FIGURE 2-17

load. (b) The corresponding one-line diagram.

For example, consider the simple power system shown in Figure A-17. If the transmission line in that power system is assumed to be lossless, the line voltage at the generator will be the same as the line voltage at the loads. If the generator voltage is specified, then we can find the current and power factor at any point in this power system as follows:

- 1. Determine the line voltage at the generator and the loads. Since the transmission line is assumed to be lossless, these two voltages will be identical.
- 2. Determine the real and reactive powers of each load on the power system. We can use the known load voltage to perform this calculation.
- 3. Find the total real and reactive powers supplied to all loads "downstream" from the point being examined.

FIGURE A-18 The system in Example A-3.

- 4. Determine the system power factor at that point, using the power-triangle relationships.
- 5. Use Equation (A-29) to determine line currents, or Equation (A-23) to determine phase currents, at that point.

This approach is commonly employed by engineers estimating the currents and power flows at various points on distribution systems within an industrial plant. Within a single plant, the lengths of transmission lines will be quite short and their impedances will be relatively small, and so only small errors will occur if the impedances are neglected. An engineer can treat the line voltage as constant, and use the power triangle method to quickly calculate the effect of adding a load on the overall system current and power factor.

Example A-3. Figure A-18 shows a one-line diagram of a small 480-V industrial distribution system. The power system supplies a constant line voltage of 480 V, and the impedance of the distribution lines is negligible. Load 1 is a Δ -connected load with a phase impedance of $10 \angle 30^{\circ} \Omega$, and load 2 is a Y-connected load with a phase impedance of $5 \angle -36.87^{\circ} \Omega$.

- (a) Find the overall power factor of the distribution system.
- (b) Find the total line current supplied to the distribution system.

Solution

The lines in this system are assumed impedanceless, so there will be no voltage drops within the system. Since load 1 is Δ connected, its phase voltage will be 480 V. Since load 2 is Y connected, its phase voltage will be 480/ $\sqrt{3} = 277$ V.

The phase current in load 1 is

$$I_{\phi 1} = \frac{480 \text{ V}}{10 \Omega} = 48 \text{ A}$$

Therefore, the real and reactive powers of load 1 are

$$P_{1} = 3V_{\phi 1}I_{\phi 1}\cos\theta$$

= 3(480 V)(48 A) cos 30° = 59.9 kW

$$Q_1 = 3V_{\phi 1}I_{\phi 1}\sin\theta$$

= 3(480 V)(48 A) sin 30° = 34.6 kvar

The phase current in load 2 is

$$I_{\phi 2} = \frac{277 \text{ V}}{5 \Omega} = 55.4 \text{ A}$$

Therefore, the real and reactive powers of load 2 are

$$P_2 = 3V_{\phi 2}I_{\phi 2}\cos\theta$$

= 3(277 V)(55.4 A) cos(-36.87°) = 36.8 kW
$$Q_2 = 3V_{\phi 2}I_{\phi 2}\sin\theta$$

= 3(277 V)(55.4 A) sin(-36.87°) = -27.6 kvar

(a) The total real and reactive powers supplied by the distribution system are

$$P_{tot} = P_1 + P_2$$

= 59.9 kW + 36.8 kW = 96.7 kW
$$Q_{tot} = Q_1 + Q_2$$

= 34.6 kvar - 27.6 kvar = 7.00 kvar

From the power triangle, the effective impedance angle θ is given by

$$\theta = \tan^{-1} \frac{Q}{P}$$
$$= \tan^{-1} \frac{7.00 \text{ kvar}}{96.7 \text{ kW}} = 4.14^{\circ}$$

The system power factor is thus

$$PF = \cos \theta = \cos(4.14^\circ) = 0.997$$
 lagging

(b) The total line current is given by

$$I_{L} = \frac{P}{\sqrt{3}V_{L}\cos\theta}$$
$$I_{L} = \frac{96.7 \text{ kW}}{\sqrt{3}(480 \text{ V})(0.997)} = 117 \text{ A}$$

QUESTIONS

- A-1. What types of connections are possible for three-phase generators and loads?
- A-2. What is meant by the term "balanced" in a balanced three-phase system?
- A-3. What is the relationship between phase and line voltages and currents for a wye (Y) connection?
- A-4. What is the relationship between phase and line voltages and currents for a delta (Δ) connection?
- A-5. What is phase sequence?
- A-6. Write the equations for real, reactive, and apparent power in three-phase circuits, in terms of both line and phase quantities.
- A-7. What is a Y- Δ transform?

PROBLEMS

- A-1. Three impedances of $4 + j3 \Omega$ are Δ connected and tied to a three-phase 208-V power line. Find I_{ϕ} , I_L , P, Q, S, and the power factor of this load.
- A-2. Figure PA-1 shows a three-phase power system with two loads. The Δ -connected generator is producing a line voltage of 480 V, and the line impedance is 0.09 + $j0.16 \Omega$. Load 1 is Y connected, with a phase impedance of $2.5 \angle 36.87^{\circ} \Omega$ and load 2 is Δ connected, with a phase impedance of $5 \angle -20^{\circ} \Omega$.

Generator

Load 1

Load 2 $Z_{\phi_1} = 2.5 \angle 36.87^\circ \Omega$ $Z_{\phi_2} = 5 \angle -20^\circ \Omega$

FIGURE PA-1

The system in Problem A-2.

- (a) What is the line voltage of the two loads?
- (b) What is the voltage drop on the transmission lines?
- (c) Find the real and reactive powers supplied to each load.
- (d) Find the real and reactive power losses in the transmission line.
- (e) Find the real power, reactive power, and power factor supplied by the generator.
- A-3. Figure PA-2 shows a one-line diagram of a simple power system containing a single 480-V generator and three loads. Assume that the transmission lines in this power system are lossless, and answer the following questions.
 - (a) Assume that Load 1 is Y connected. What are the phase voltage and currents in that load?
 - (b) Assume that Load 2 is Δ connected. What are the phase voltage and currents in that load?
 - (c) What real, reactive, and apparent power does the generator supply when the switch is open?
 - (d) What is the total line current I_L when the switch is open?
 - (e) What real, reactive, and apparent power does the generator supply when the switch is closed?

FIGURE PA-2

The power system in Problem A-3.

- (f) What is the total line current I_L when the switch is closed?
- (g) How does the total line current I_L compare to the sum of the three individual currents $I_1 + I_2 + I_3$? If they are not equal, why not?
- A-4. Prove that the line voltage of a Y-connected generator with an *acb* phase sequence lags the corresponding phase voltage by 30°. Draw a phasor diagram showing the phase and line voltages for this generator.
- A-5. Find the magnitudes and angles of each line and phase voltage and current on the load shown in Figure PA-3.

FIGURE PA-3

The system in Problem A-5.

- A-6. Figure PA-4 shows a one-line diagram of a small 480-V distribution system in an industrial plant. An engineer working at the plant wishes to calculate the current that will be drawn from the power utility company with and without the capacitor bank switched into the system. For the purposes of this calculation, the engineer will assume that the lines in the system have zero impedance.
 - (a) If the switch shown is open, find the real, reactive, and apparent powers in the system. Find the total current supplied to the distribution system by the utility.

FIGURE PA-4 The system in Problem A-6.

- (b) Repeat part (a) with the switch closed.
- (c) What happened to the total current supplied by the power system when the switch closed? Why?

REFERENCE

1. Alexander, Charles K., and Matthew N. O. Sadiku: Fundamentals of Electric Circuits, McGraw-Hill, 2000.